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THE pE HAAS —van ALPHEN EFFECT IN ALUMINIUM

By E. M. GUNNERSEN
Royal Society Mond Laboratory, University of Cambridge

(Communicated by D. Shoenberg, F.R.S.—Received 19 June 1956)
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The de Haas—van Alphen effect in aluminium has been studied by measuring the oscillatory
variation with magnetic field of the torque on a single crystal at liquid-helium temperatures in
fields up to 15-4 kG. The torques were measured by an electronic feed-back device designed to
reduce the twisting motion of the crystal during torque measurement. Particular attention was
paid to the variation of the periods of the relatively high-frequency components of the oscillations
with the orientation of the field relative to the crystal axes. A consistent interpretation was obtained
by supposing that there are three such periodic components for each field direction, though often
the relative amplitude of one or two of these is negligibly small. In terms of Onsager’s theory, the
period is inversely proportional to the maximum area of cross-section of the Fermi surface by
planes normal to the field, and the three periodic components have been shown to correspond to
three identical cushion-shaped pieces of the Fermi surface with their principal axes mutually
perpendicular. The location of these pieces in relation to the Brillouin zone is discussed and the
characteristic dimensions of each piece have been calculated. Some results on the variation of the
period of the relatively low-frequency component with field orientation in a (100) plane are
described, but no detailed interpretation in terms of the shape of appropriate parts of the Fermi .
surface has been obtained. A few results on the variation of the oscillation amplitude with field
orientation and on the temperature-dependence of amplitude are also presented. Alloying the
aluminium with up to 0-26 %, magnesium increases the period of the low-frequency component by
about 2-3 %, ; this suggests that this component arises from electrons rather than holes. The period
of the high-frequency component is not significantly changed by alloying.
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1. INTRODUCTION

At low temperatures many metals show an oscillatory variation of magnetic susceptibility
with field, H (the de Haas—van Alphen effect) ; the period of these oscillations is constant if
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300 E. M. GUNNERSEN ON THE

they are plotted against 1/H. Landau (1939) worked out the theory of this effect assuming
a quadratic dependence of the energy E of the electrons on momentum p (ellipsoidal energy
surfaces in p-space), and showed that the period A(1/H) is given by

A(1/H) = ¢h/2amcE,, (1)

where m is an appropriate effective electron mass and E| is the Fermi energy relative to the
highest or lowest energy of the band. Comparison of Landau’s theory with experiment
(Shoenberg 1939, 1952) confirmed the main qualitative predictions of the theory, but
suggested that the ellipsoidal assumption was inadequate for some of the metals studied.
Onsager (1952) discussed the theory for an arbitrary dependence of £ upon p, and showed
that the period A(1/H) should be inversely proportional to the maximum (or minimum)*
cross-sectional area ./ in momentum space of the Fermi surface cut by planes normal to
the field H, the constant of proportionality involving only universal constants. The relation is

AQ/H) = ehjest, (@)t

and it can easily be shown that (2) reduces, as it should, to (1) for the special case of ellip-
soidal energy surfaces. In general, there may be several closed regions of the Fermi surface
which are relevant, and we should then expect each to contribute its own oscillatory com-
ponent with its own period. As we shall see later, there are in fact several oscillatory com-
ponents present in each experimental curve. The theory for energy surfaces of arbitrary
shape has been worked out in more detail by Lifshitz & Kosevich (1954, 1955), and the
physical principles involved have been discussed by Pippard (1955).

By studying in detail the dependence of the periods of the de Haas—van Alphen oscilla-
tions in a metal on the orientation of the field with respect to the crystal axes, it should
therefore be possible, using equation (2), to determine 7 (§) for all directions&, and hence
to deduce the shape and size of the Fermi surface. This can be done, under certain restric-
tions, using an elegant geometrical theorem recently given by Lifshitz & Pogorelov (1954).
Comparison of equation (2) with the results of experiments in moderate fields (of order
15kG) shows at once that the values of &7 are much smaller than would be expected from
the main part of the Fermi surface of a metal. Thus the oscillations observable in moderate
fields presumably arise from only small parts of the Fermi surface—small ‘pockets’ either
of electrons at places where the surface overlaps a Brillouin zone boundary, or of positive
holes left inside a nearly full zone. It is therefore only the shape of the surface round such
pockets which can be obtained from experiments in moderate fields.

This paper describes a detailed investigation of the orientation dependence of the
de Haas—van Alphen effect in aluminium at fields up to 15 kG with the view to trying out
the practical applicability of the above method of studying the Fermi surface. Aluminium
was chosen because (@) it has not proved possible to interpret its behaviour in terms of
ellipsoidal energy surfaces, (5) it has cubic symmetry, thus making the interpretation
somewhat simpler than for a metal of lower symmetry, and (¢) the oscillations contain a
component whose period is one of the lowest exhibited by any metal and which therefore

* In practice the extremum is usually a maximum, and we shall, in what follows, assume that a maximum
is implied.

1 Since this was written I have learnt that the same result was obtained independently by I. M. Lifshitz
and reported to a meeting of the Ukrainian Academy of Sciences in January 1951.
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arises from relatively large parts of the Fermi surface. The method of experiment adopted
has been to study the torque on a single crystal by means of an improved form of the torsion
apparatus used by Shoenberg (1952). The variation of torque with field has been measured
for many different orientations of the field relative to the crystal axes, and from a detailed
analysis of the dependence of periods on field direction it has indeed proved possible to
deduce the shape and size of the relevant parts of the Fermi surface. The main emphasis
throughout has been on the determination of periods, but some results on the temperature-
dependence of amplitudes, and on the influence of adding small amounts of magnesium to
aluminium have also been obtained ; their relevance will be discussed at the end of the paper.

2. EXPERIMENTAL DETAILS

(a) The torque meter apparatus

The conventional method of studying the de Haas—van Alphen effect is to measure the
torque exerted on a single crystal of the metal in a uniform magnetic field. The crystal
is attached to the bottom of a long quartz rod suspended by a short torsion wire, and the
torque is measured by observing the deflexion of a beam of light reflected from a mirror on

Ficure 1. Schematic diagram of torque meter. G, galvanometer coil; M, mirror attached to sus-
pension; H, magnetic field produced by permanent magnet; P, photocell; 4, thyratron ampli-
fier; F, smoothing filter; G,, G,, vertical grids.

the suspension. A difficulty of the method is that if, as for aluminium, the phase of the
oscillations is sensitive to the orientation of the field, the movement of the crystal caused by
the twisting of the suspension can cause distortions of the de Haas—van Alphen curves,
and may even produce positions of instability (Shoenberg 1952). The apparatus has there-
fore been modified to reduce the angular motion of the crystal without loss of sensitivity by
introducing an electrical feed-back device (cf. Croft, Donahoe & Love 1955).

The device is illustrated schematically in figure 1. Light from the mirror M on the suspen-
sion falls on the photocell P, the output current of which is amplified by the thyratron

37-2
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amplifier 4, smoothed by the filter ¥, backed off by a suitable constant current and finally
fed back into the galvanometer coil G attached to the suspension and surrounded by a small
permanent magnet. The torque on the coil opposes the torque on the crystal, and reduces
the deflexion to a value much smaller than it would have had in the absence of feed-back;
the current in the coil is then proportional to the torque on the crystal and provides a con-
venient measure of it. The sensitivity of torque measurement (i.e. meter reading per unit
torque) is controlled by the shunt resistance R across the coil, while variation of the ampli-
fication of 4 controls the twist of the crystal per unit torque. The stiffness of the phosphor
bronze fibre used (~ 75 dyn cm/rad) is unimportant, since by increasing the amplification
the final twist can be made arbitrarily small. To remove any self-sustained oscillations of
the system (‘hunting’), damping was provided by immersing two vanes attached to the
upper end of the suspension in oil. In order to get a large change of light on the photocell
for a small change in deflexion, vertical grids G, and G, were placed over the light source
and over the photocell window so that the image of G, coincided with G,. The sensitivity
of the apparatus for R = oo was about 50 pA/dyn cm, but suitable adjustment of R and 4
made it possible to measure accurately torques anywhere in the range 0-002 to 20 dyn cm
without the twist of the crystal exceeding 0-1° (which was not large enough to distort the
de Haas—van Alphen oscillations).

(b) The magnetic field

A Weiss electromagnet was used, capable of producing 15-4kG in a 5cm pole gap at
about 100 A. This field was stabilized to about 0-05 %, against fluctuations of longer than
0-1s duration by means of a single feed-back loop electronic stabilizer. The potential differ-
ence across a very low resistance in the magnet circuit was balanced against a pre-set
voltage tapping from a neon voltage regulator tube, and the difference amplified and used
to control the field of a short-response-time variable motor-generator set (Amplidyne).
The output of the Amplidyne was fed into the field windings of the main 30 kW generator
supplying ;the magnet, so that the voltage tapping from the neon, in this way, controlled
the magnetic field. The magnet was calibrated by the conventional flip coil and fluxmeter
method, and the slope of the curve of field against current was determined to about 19,
over the range of 8 to 15-4kG, though the absolute field values were probably subject to
inaccuracies of as much as 19,. The field was homogeneous to about 1 part in 103 over a
region of 8 mm on either side of the centre of the magnet pole gap.

(¢) The specimens

All the pure aluminium crystals were grown in the form of rods about 4 mm long and
1-9mm in diameter from spectroscopically pure material (Johnson, Matthey Lab no.
5941 X)). They were prepared by solidification from the melt in a vacuum by means of a
slow-travelling furnace. The crystals of aluminium containing magnesium were grown by
the method of strain anneal, since a solidifying boundary advancing along a rod of molten
alloy would probably result in lengthwise magnesium-rich streaks.

Each crystal was mounted on a short copper wire, weak enough to allow the orientation
to be altered by bending the wire, but stiff enough to retain that orientation during the
measurements. One end of the wire was attached to the long quartz suspension rod, and
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the etched crystal was joined to the other end by indium soldering on to a small section of
the aluminium which previously had been lightly electroplated with copper. By bending
the wire while the quartz rod was mounted on an optical goniometer table, it was possible
to set the crystal to any desired orientation with an accuracy of about 3°. Orientation errors
arising from transferring the crystal from the goniometer to the freely hanging suspension
were found to be almost negligible with this method of mounting, and, moreover, it was not
necessary to remount the crystal for each new orientation. Immediately before bending the
copper wire into a new direction, the preceding orientation of the crystal was usually
checked on the goniometer in order to confirm that it had been retained during the low-
temperature measurements. \

To determine accurately the angular position of the projection of a tetrad axis in the
horizontal plane when the suspension was hanging freely in the pole gap, a plot of torque
against horizontal magnet rotation angle at a constant field of 14-6 kG at 4-2° K was made
at the beginning of each helium run. The magnet rotation angle at which the plotted curve
has a position of inverted mirror symmetry then fixed the direction of the projection of a
tetrad axis in the horizontal planetoabout 0-1° (Shoenberg 1952). The angle which the tetrad
axis makes with the horizontal plane is, however, still subject to the uncertainty of about
3° arising from the goniometer measurements.

3. PERIOD ANISOTROPY OF THE HIGH-FREQUENCY OSCILLATIONS

(a) Experimental procedure and results

The experimental procedure was to choose a temperature in the range 1-1 to 4-2° K such
that the amplitude of the oscillations being studied was conveniently large, and then to
tabulate galvanometer feed-back current (i.e. torque) against magnet current for the magnet
current range 68 to 100 A. Readings were taken at magnet current intervals close enough
(usually $A) to yield about seven torque readings per cycle of the highest frequency
oscillations present. In order to investigate the dependence of the periods on the orientation
of the field, these tabulations were carried out for numerous field directions in a number of
specially chosen crystallographic planes, the orientation in each plane being defined by the
angle ¥ which H makes with the projection of a tetrad axis in that plane. To change to a
new horizontal plane of rotation of H, it was necessary to re-orientate the crystal on its
mounting. Each of these tabulations of torque against magnet current was then plotted
graphically as a curve of torque against 1/H by means of the known field calibration of the
magnet. Automatic recording methods could not be used because a small change in field
was found to produce transient torques through the eddy currents induced in the crystal,
which, in aluminium in particular, were much larger than the steady de Haas—van Alphen
torques being measured ; thus the necessity of at least a 10s wait after each increase of field
made automatic recording impracticable.

Some typical de Haas—van Alphen curves are shown in figures 2 to 5. It can be seen that
the curves contain ‘low-frequency’ oscillations (periods A(1/H) from 15 to 37 x 10-7 G™1)
on which are superimposed ‘ high-frequency’ oscillations (periods from1-7 to 3-6 x 10-7G~1) ;
both low and high frequencies often show beats, indicating that each group of oscillations
contains several periodic terms of somewhat different periods. Since it proved difficult to
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analyze the low-frequency oscillations reliably into separate periodic terms (because the
field sweeps could not be made long enough to cover enough beats), most of the discussion
which follows will be concerned only with the high-frequency oscillations, and the low-
frequency oscillations will be briefly discussed later (§4a). Figure 2 shows a curve in which
only one high-frequency term has appreciable amplitude, figure 3 shows a curve having
beats between two high-frequency terms of nearly equal periods, but which contains
relatively little low-frequency component, figure 4 is an example of a curve containing two
high-frequency terms whose periods are rather different, and figure 5 is an example of a
curve in which two high-frequency terms are detectable, but both of very small amplitude
compared with the low-frequency terms.

Although the plotted de Haas—van Alphen curves contain about seven points per cycle
of the high-frequency oscillations, they are nevertheless not of sufficient quality to warrant
an accurate Fourier analysis, the amplitudes being too uncertain and the field sweeps not
always long enough to allow the beat patterns to repeat themselves. The analysis of the
curves of torque against 1/H into their composite high-frequency periods was therefore
carried out by the following, somewhat more empirical, but simpler methods.

If only one high-frequency oscillatory term has appreciable amplitude (as in figure 2),
the determination of its period presents no difficulty; as many periods as possible are counted
and the range of 1/H they occupy divided by the number counted gives the required period.*
If two high-frequency terms are present with nearly equal periods but with appreciably
different amplitudes (as in figure 3), beats occur, but the individual oscillations can still
be followed at the beat waists. If the procedure for a single frequency is now applied over
a range covering several beats, the period obtained is that of the term of larger amplitude.
The other period is then determined in an obvious way from measurement of the beat
period. If, however, the amplitudes are very nearly equal, the extrema of the oscillations
disappear at a beat waist; the procedure for a single frequency, if applied over several beats,
now gives the harmonic mean of the two periods. If there are two high-frequency periods
whose values differ considerably, so that only two or three oscillations are present in each
beat period (as in figure 4), then a quick though rough method if the upper period has the
dominant amplitude, is to estimate the upper period by counting only the large amplitude
high-frequency peaks, and the lower period by counting all high-frequency peaks. Figure 5
is an example of a curve in which the high-frequency amplitudes are much smaller, but

* For this purpose periods may be taken to mean intervals between successive maxima (or minima);

strictly speaking, zeros rather than extrema should be used since the periodic curve is modulated, but the
modulation is gradual enough to make this error negligible.

Ficure 2. de Haas—van Alphen curve exhibiting one high-frequency term; (100) plane. ¢ = 25-0°;
T=1-27°K; ———— indicates low-frequency component.

Ficure 3. de Haas—van Alphen curve exhibiting two high-frequency terms of nearly equal periods;
(110) plane. ¥r=50-0°; T'=2-77°K. '

Ficure 4. de Haas—van Alphen curve exhibiting two high-frequency terms whose periods differ
considerably; (110) plane. ¥ =86-0°; T'=2-77°K; ———— indicates low-frequency component.

Ficure 5. de Haas—van Alphen curve exhibiting two high-frequency terms with small amplitudes;
(100) plane. y¥r=42-5°; T=2-57°K.
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where the method just mentioned can still be applied; it illustrates the difficulty of reliable
analysis for small amplitudes.

As will be explained in § 3 (4), it later became necessary to look for more than two high-
frequency terms, and several curves were indeed found whose high-frequency oscillations
could not be satisfactorily accounted for by two components alone. Figure 6 shows one such

306

torque
S
1

066
104/H (G1)

Ficure 6. de Haas—van Alphen curve exhibiting three high-frequency terms. H is in the direction
¥=65-0° in a plane obtained from a (110) plane by tipping a [110] direction up by 73°;
T'=1-32°K. Vertical arrows indicate approximate positions of zero beat waists. The periods
deduced from the curve were 3-10, 2:78 and 2-70 x 107 G~!
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Ficure 7. Variation of high-frequency periods with ¥ in a (100) plane.
The various kinds of points refer to the various crystal specimens.

example, and it can be seen that beat waists of approximately zero amplitude occur at
quite unequal intervals. This is characteristic of a curve made up of three periodic terms in

which two of the periods are nearly equal and the third is rather different; the separate

periods were estimated from detailed considerations of the manner in which the amplitude
fluctuated.
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In some cases trial synthesis greatly assisted the analysis as well as providing a useful
check; sinusoidal terms of the appropriate frequencies were added, and their relative
amplitudes adjusted until the experimental curves (from which the low-frequency com-
ponent had first been subtracted) were sufficiently closely reproduced. These syntheses
were done graphically at first, but later an electrical method was developed in which the
outputs from three beat-frequency oscillators were superimposed and displayed on an
oscilloscope screen.

The chosen crystallographic planes which were set horizontal, and in which H was
rotated, were a (100) plane, a (110) plane, a (111) plane, the plane obtained from a (100)
plane by tipping one tetrad axis up by 124°, and the plane obtained from a (110) plane by
tipping a [110] direction up by 73°. The variation of high-frequency period with ¢ obtained
in each of these planes is shown in figures 7 to 11 ; the reasons for joining up the experimental
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FIGURE 8. Variation of high-frequency periods with ¢ in a (110) plane.
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Ficure 9. Variation of high-frequency periods with ¢ in a (111) plane.
At J oscillations having no beats were observed.
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points by the curves shown will be discussed below (§3(6)). The high-frequency periods
for any one crystal were found to be reproducible to about 29, from run to run. The repro-
ducibility from one crystal to another, however, was rather poorer, but this could be
accounted for by small errors in orientation. For instance, sometimes beats between two
high-frequency terms occurred for the field direction near a [100] axis in what was nominally
a (100) plane, and sometimes not, depending on how accurately the (100) plane was
coincident with the plane of rotation of the field. As will be explained in § 4 (4), the frequent
occurrence of gaps in the curves of period against ¥ is probably due to the amplitudes of
those high-frequency terms becoming undetectably small.
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(b) Interpretation of the anisotropy of the high-frequency periods

Nearly all of the de Haas—van Alphen curves used in the four sweeps of figures 7 to 10
were found to be interpretable in terms of only two high-frequency components, but
occasionally an anomalous beat pattern was observed which did not appear to be explic-
able by less than three high-frequency components of different periods (e.g. figure 6).
Moreover, in devising a scheme of period values for all directions in space, which would
interpolate satisfactorily and consistently between the sets of directions represented in
figures 7 to 10, and which would indicate how to bridge the gaps between the plotted points
in this diagram, it was found necessary to assume that three oscillatory components were
present at each orientation, but that one of them was usually undetectable because of its low
amplitude. For instance, the field direction represented by J on the period-¢ variation in
the (111) plane (figure 9) also occurs at § = 35° in the (110) plane (figure 8). Figure 9
shows that for this field direction there are two coincident periods with A(1/H) = 3-09 x
10-7G~1, while figure 8 shows an additional period of 2:04 x 10-7 G~1. Although only the
2:04 X 1077 G~! period occurs at J in figure 8, the upper curve (marked 1, 2), drawn to
bridge the gap at J, does pass through just the correct value, 3-:09 X 1077 G! at ¢ = 35°
(i.e. the value that corresponds to Jin figure 9). We see then that in this case, the assumption
of three, rather than two, components is unavoidable. The fact that quite different relative
amplitudes of the three components occur in different sweeps for the same direction of the
field relative to the crystal axes (e.g. J in figures 8 and 9) is due to the fact that the axis
of measurement of torque is different in the different sweeps (see §4 (8)).

This interpretation implies that in the sweep in the (110) plane there are two terms of
coincident period, but of negligible amplitude at the orientation J; the symmetry argu-
ments given below indicate even more, namely, that the two terms should have identical
periods not only at J, but along the whole of the curve marked 1, 2 in figure 8. If, however,
the sweep plane is slightly different from (110), these two periods corresponding to the single
" curve 1, 2 in figure 8 should become slightly different, and it should then be possible to
observe three periods simultaneously. It was for this reason that the sweep of figure 11, in
a plane obtained from a (110) plane by tipping a [110] direction up by 72°, was made, and
it can be seen that the 1, 2 curve has indeed split up as expected. As mentioned in the
previous section, curves exhibiting three high-frequency terms were indeed found in this
plane; figure 6 shows one such example.

Once it was clear that there were three high-frequency terms present, it became possible
to draw the mutually consistent curves shown in figures 7 to 11 through the experimental
points. The parts of the curves not covered by experimental points are indicated by dashed
lines, and it will be realized, of course, that these dashed curves are somewhat schematlc,
particularly in the regions of low period close to the tetrad axes.

The dotted curves in figures 7 and 10 indicate how the periods would behave if the
orientations were exactly correct. For instance, in figure 10, one of the tetrad axes (pro-
jection on plane of rotation of H indicated by I) was deliberately tipped up by 124°, but it
was found on checking the orientation after the sweep had been completed that the other
tetrad axis (projection indicated by 4) had inadvertently been tipped down by 53°. The

curves in figure 7 around ¥ = 45° have been drawn to join up as smoothly as possible with
38-2
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the rest of the diagram. The experimental points in this region tend to lie systematically
above the drawn curves; this is probably because the method of period analysis becomes
unreliable when, as here, the amplitude of the upper-period term obscures that of the lower-
period terms. The indicated uncertainties of some of the experimental points have in fact
probably been underestimated.

So far the scheme of joining up the experimental points of figures 7 to 11 has been pre-
sented mainly from an empirical point of view; it is, however, strongly supported by the
following symmetry considerations, which, indeed, suggested the scheme in the first place.
Aluminium has a face-centred cubic lattice, and the reduced Brillouin zone of such a lattice
is illustrated in standard texts (e.g. Mott & Jones 1936, p. 157). The small parts of the Fermi
surface responsible for the high-frequency oscillations are likely to be situated close to various
points of symmetry in the Brillouin zone. If, for instance, they are centred on the twenty-
four corner points W of the zone, the twenty-four pieces of surface can be joined together
to give three pairs of closed surfaces. The two members of each pair are inversion images
of one another, which implies that they give rise to equal de Haas—van Alphen periods for
any orientation of the magnetic field. The variation of the period with orientation due to
any one pair of surfaces has the fourfold symmetry of a cushion (point group 4/mmm), and
the fourfold axes of the three pairs lie along the three tetrad axes of the face-centred cubic
lattice. The pattern of the variation with orientation of the periods due to these three pairs
of surfaces, or ‘pockets’, as we shall call them subsequently, would show, among others, the
following features:

(1) there would be in general three, and only three, periods for any one orientation of
the field;

(2) in a (100) plane one period would have fourfold rotational symmetry and the other
two periods twofold rotational symmetry;

(3) ina (110) plane two of the periods would coincide for all angles ¥, and all three periods
would be equal for the field along a [111] direction (C in figure 8);

(4) in a (111) plane each of the three periods would have twofold rotational symmetry.

These features would be shown also if the pieces of Fermi surface were situated round the
centres X of the square faces, but not at any other points on the zone. The observed patterns
(figures 7 to 11) are indeed consistent with all these features, though in view of the ‘gaps’
due to insufficient amplitude, it is of course impossible to be quite sure. We conclude,
therefore, that the pieces of the Fermi surface giving rise to the high-frequency oscillations
are centred round the points W or X in the Brillouin zone; later (§3(d)) reasons will be
mentioned for assigning them to W rather than X.

(¢) Representation of the period anisotropy results on a stereographic plot

In order to carry out the calculation of the shape of the Fermi surface, it is necessary to
know the high-frequency periods for any arbitrary orientation of H; i.e. to interpolate
period values for orientations intermediate between those covered by figures 7 to 11. This
can most conveniently be done by representing A directions as points on a stereographic
projection and then constructing contour lines of equal period on this projection. A separate
stereographic contour diagram has to be drawn for each of the three periods marked as
1, 2 and 3 in figures 7 to 11, since each arises from a different pocket (or from a different


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

pE HAAS-van ALPHEN EFFECT 311

pair of symmetrical pockets) of the Fermi surface. Because these three pockets must, to
satisfy the zone symmetry, be inclined mutually at right angles, these three contour diagrams
differ from each other only by 90° rotations. If the three contour diagrams are superimposed,
the three high-frequency periods observed in practice can be read off at any orientation.
Owing to the cubic symmetry of the triple-valued contour diagram, contours for the three
periods need only be drawn in one of the elementary triangles bounded by (100) and (110)
planes (i.e. in th of the solid angle 47 of all H directions). But if all the information is to

C,A
[ooi]

1 2 3 4 5 6 7
Ficure 12. Contour diagram of period A(1/H) of the high-frequency oscillations represented by the
curves of figures 7 to 11 over one octant of a stereographic projection. The fourfold axis is at the
centre of the projection for period 3. Alternate contours are numbered: contour no. 0 corre-
sponds to A(1/H) =1-83 x 10~7 G~! and no. 17 to A(1/H) =3-53 x 10~7 G~!; the contour spacing
is 0-05x 1077 (i.e. 0-1x 1077 between successive numbered contours). The various letters
correspond to directions marked in figures 7 to 10 and 13.

be displayed on a single-valued contour diagram corresponding to one of the Fermi surface
pockets, then contours in #th of the stereographic projection must be drawn. Figure 12
shows a contour diagram for one of the pockets, for one octant of the solid angle 47 of H
directions, the relevant period being period 3. For periods 1 and 2, the contour diagrams
would have their fourfold axes at the pole or at the equatorial extreme respectively.
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To check the reliability of the contours, additional period measurements were made for
several ¢ values in a plane chosen to pass approximately through the centre of an elementary
triangle; these measurements were made with about 1 9%, accuracy by using especially long
field sweeps. As can be seen from table 1, the period values obtained agree to within 2 %,
with those read off the contour diagram. A further check on the consistency of the contour
diagram comes from the observation that at the orientations where the planes of rotation
of H used in figures 7 to 11 intersect, the periods measured experimentally in each plane

TABLE 1. A CHECK ON THE RELIABILITY OF THE CONTOUR DIAGRAM (FIGURE 12)
10°A(1/H) (G-Y)

ve T°K measured read directly off figure 12
10-0 2-07 2-92, 2-73 2-90, 2-74

17-0 2-07 3-09 308

24-0 2-07 3-24 ' 3-22

310 2-07 3-30, 2-83 3-30, 2-80

59-0 1-98 2-97 2-95

66-0 1-99 3-10 : 3-08

730 1-98 3-21,2:90 3-21, 2-93

82-0 1-88 2-56 2-58

90-0 1-84 2-35 2-31

agree with each other to within about 29, (such points are marked by corresponding letters
in the various diagrams). The contours are thus probably accurate to within half a contour
spacing everywhere except in the immediate vicinity of the fourfold axis, where no experi-
mental values exist at all and where the contours are only schematic (as are, of course, the
corresponding parts of the sweep curves in figures 7 to 11).

(d) Calculation of the shape and size.of the Fermi surface causing the high-frequency oscillations

The problem of calculating the shape and size of the Fermi surface pockets causing the
high-frequency oscillations is essentially that of determining a surface from a knowledge of
its maximum cross-sectional area </ (§) in planes normal to a unit vector§ for all directionsg.
However, </ (§) does not determine the shape of the surface uniquely unless it is assumed
that the surface has a centre of symmetry and that the surfaces are not too contorted.
Under these assumptions the cross-section of maximum area perpendicular to a particular
direction is always a central cross-section. Since the pieces of the Fermi surface, if centred
about the points W on the Brillouin zone, would not have a centre of symmetry, the best
that can be done in the way of determining their shape is to calculate the shape of the
centro-symmetrical surface which has the same o/ (§) for all § as each of the actual pockets.
This then represents a kind of average shape of the two members of the pair. An elegant
solution of the mathematical problem for a centro-symmetrical surface has recently been
given by Lifshitz & Pogorelov (1954). They find that the radius vector p(e) of the surface
in the direction of the unit vector € may be expressed as

m77(e) = 2(0)~ | fulw) (), (3)

where | Xe(w) = %f:ﬂﬂ (5) dg, (4)
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i.e. x,(u) is an average of &/ (§) taken round the latitude §. Here u = cos 8, 6 is the angle
between the unit vectors § and e, and ¢ is the corresponding azimuthal angle (note that
u= (e.g)); if & is the direction of the field, then 2/ () is related to the period A(1/H) by
equation (2). ‘

This leads to the following practical procedure for calculating p(e). First y,(«) is deter-
mined for a particular e by averaging the values of the reciprocal of the periods read from

TaBLE 2. VALUES OF y, ()
Ko (%) X 94 x 1040%

6° u a b c d I
90 0 46-92 41-01 31-57 41-97 36-25
87:5 0-044 46-46 40-95 31-53 41-97 36-45
85 0-087 45-82 41-01 -31-51 41-98 36-60
82:5 0-131 44-86 40-95 31-69 42-03 36-86
80 0-174 44-00 41-01 31-96 42-03 37-17
77-5 0-217 43-13 41-10 32-34 42-19 37-52
75 0-259 42-50 41-26 32-71 42-44 37-94
70 0-343 41-08 41-52 33-64 42-85 38-68
65 0-423 39-65 42-12 34-83 42-40 39-04
60 0-500 38-24 42-83 36-03 40-73 38-99
55 0-575 36-95 42-52 37-52 38-99 38-83
50 0-643 35-77 41-13 39-58 37-47 38-90
40 0-768 34-28 35-95 45-90 35-53 39-68
30 0-867 34-12 32-40 51-70 34-21 40-90
20 0-942 34-65 29-96 52-21 32-00 42-88
10 0-987 35-82 28-71 — 30-50 45-64

0 1-000 39-10 28-10 54-40 30-00 48-10

* The figures given are actually the averages of 10-5/A(1/H) round each latitude u=cos #; they are
therefore values of )y multiplied by (c/ek) x 1073, i.e. 9-4 x 1040,

TABLE 3. SUMMARY OF CALCULATION OF p VALUES

1020p
9-4 x 1040 x - A \
* N A —8 method,
fI{X(O) _X(u)}du A—0 3 extra
direction x(0) 0 u? mp? direct method method contours
a 46-9 - 53-5 (8) 100-4 1-84 (0-07) 1-78 1-79
b 41-1 1-6 (1) 42-7 1-20 (0-02) 1-23 1-26
¢ 31-6 —16-0 (2) 15-6 - 0-73 (0-05) 0-73 0-73
d 42-0 39 (1) 459 1-24 (0-01) 1-23 —
I 36-2 —16-7 (5) 19-5 0-81 (0-10) 0-86 e

Note. The figures in brackets give rough estimates of the uncertainties arising in the evaluation of the
integral from the range near #=0, and the corresponding uncertainties in p.

the contour diagram at 2° intervals of ¢ round a particular latitude §. For any direction e
represented by a point on the circumference of the contour diagram, the appropriate
latitudes are defined as latitudes of a stereographic net whose pole is placed at the point
representing e. For other directions e it is simplest to draw a new counter diagram in which
the plane of the projection contains e, i.e. such that e is again represented by a point on the
circumference. For each direction e a series of values of y,(«) for sufficiently closely spaced
values of u between 0 and 1 is obtained (see table 2), the integrand of (3) is plotted graphic-
ally, and the integration carried out by counting squares.. The directions chosen for cal-
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culation are shown in figure 138 and denoted by a, b, ¢, d, f; the calculation and the results
for p(e) are summarized in table 3.

Since y,() is an even function of u, {x,(«) —¥,(0)}/4? should become independent of u
for sufficiently small values of , i.e. the graph of the integrand in (3) should flatten out.
In fact, however, the accuracy of determination of y,(z) becomes inadequate for « less than
about 0-1 and the ‘flat’ region is, for most directions e, never well established, the graph
appearing in some cases to continue steeply up, even at the smallest values of u. This makes
the value of the integral in (3) uncertain by an amount which is difficult to estimate, though
some indication of the uncertainty is given in table 3. It can be seen that the corresponding
uncertainty in p is not usually very serious. Itis worst for p(¢) and p( f) because the two terms
in (3) then have opposite signs.

In order to avoid the uncertainty inherent in this direct method an alternative method
was tried, based on an intermediate step in Lifshitz & Pogorelov’s derivation of (3). This is

mpte) = tim %) du— [ 0w (=) (5)

If the limit sign is omitted, the right-hand side of (5) can be calculated for a small finite
value of A (0-1 was chosen), and this gives a value of p averaged over a small range of direc-
tions around e. This method is less sensitive to the uncertainties of the y values near u = 0
than is the ‘direct’ method, but, on the other hand, the answer it gives must involve some
extra error because the limiting process in (5) has been omitted. The integrand of the second
integral in (5) becomes infinite as #— A, and to avoid this infinity the range of integration
is broken up into two parts: from A to 0 where ¢ is still small (0 = 0-17 was used, and it was
shown that even for as high as & = 0-25 much the same answers were obtained), and from
¢ to 1. The first part is calculated analytically assuming x(z) to vary linearly between A
and ¢ (this can be shown to introduce negligible errors), and the second part graphically.
The values for p obtained by this ‘A—§’ procedure are also shown in table 3, and it can be
seen that they agree quite well with the ‘direct’ values.

In the calculation of p(e) by the direct method it can be seen that the most important
contribution usually comes from y,(0); now since for directions ¢ and & this involves the
contours near the centre of the diagram, which, as has been explained in § 3 (¢), are really
only very roughly known, a check was made to see how the answers would be affected if the
contour diagram were modified in thisregion. The lowest period was taken as 1-68 x 10-7 G
instead of 1-83 x 107 G~1, and three extra contours had to be accommodated. A recalcula-
tion of p(a), p(b) and p(c) with the new contour diagram gave values very little different
from the earlier ones (see table 3), so it is clear that the precise form of the lowest contours
is not very significant for the final answers.

Taking into account the possibility that the contour diagram may be in error near the
fourfold axis to an even greater extent than just suggested, and bearing in mind other errors
that may have entered in the construction of the contour diagram, and also the compu-
tational errors and the various uncertainties explained above, it is probably safe to say that
the p values are reliable to better than 109,. .

From the p values it follows that the shape of each of the three ‘pockets’ of Fermi surface
must be somewhat like that indicated by the cross-sections shown in figure 13; each of
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the three calculated surfaces corresponds to a pair of non-centro-symmetric surfaces (cf.
pp. 310, 312) and they have their principal axes mutually at right angles. The slight
hump at b shown in the section with fourfold symmetry (ab) is suggested by the fact that
p(d) = p(b), but may not be real; the ac section lies inside the ellipse determined by p(a)
and p(c), since p(f) is about 15 %, less than would be appropriate for an ellipse with semi-axes
p(a), p(c). As a check on the reliability of the shapes indicated, the areas of the cross-sections
in the planes ab, ac and bc were estimated, treating the sections ac and bc¢ as elliptical and ab
as a square of side 2p(b). These agreed reasonably with the reciprocal periods read off the
contour diagram.

The volume of each pocket can be estimated roughly by treating the ab section as a
square of side 2p(b) and assuming that sections cut parallel to 4 and normal to the plane ab
are elliptical of major semi-axis p(b). This gives the volume as v = $n2p2(d) p(c), or
51 x 1070 g3cm3s~3. The effective number of electrons (or positive holes) per atom for
each pocket is a%/2k3, where a is the lattice spacing, and putting ¢ = 4-04 X 108 cm, we
find 0-6 x 10~3 electron per atom. The total number is either 6 or 3 times as great, depending
on whether the relevant pockets are situated at the points W or X on the zone.

The results just described throw some light on the question of whether W or X is the more
probable location. Theoretical calculations by Heine (1957) on the expected form of the
energy surface in aluminium show that pockets of positive holes where the Fermi distribu-

(0] )

[o11]

Ficure 13. Plan and two elevations of one of the three cushion-shaped Fermi surface pockets.
a, b, ¢, d, f indicate the directions for which p has been calculated.

tion just fails to fill the first Brillouin zone could have a shape consistent with that experi-
mentally found if these pockets are located at W, but not if they are located at X (pockets
at X would have the ratio of p(a) to p(¢) much greater than that observed). These calcula-
tions have not been successful in identifying the still smaller pockets which are responsible
for the low-frequency oscillations (see discussion in § 4 (a)).

4. MISCELLANEOUS EXPERIMENTAL RESULTS

(a) Period anisotropy of the low-frequency oscillations

To determine the periods of the lower frequency terms it was necessary to measure
torques at close field intervals over much longer field sweeps (95 to 15-4 kG) than those used
in the high-frequency period measurements, since otherwise the beat patterns are too short

39 VoL. 249. A.
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to permit reliable period analysis. Even with this maximum length of field sweep, reliable
component periods for the lower-frequency terms were not always obtainable, and these
lower-frequency periods have in fact been determined at only a few selected values of ¥
in a (100) plane. Table 4 gives the values obtained ; most of these low-frequency measure-
ments were taken at 4-2° K in order to reduce the relative amplitude of the high-frequency
component. The low-frequency oscillations have only a single sinusoidal component near
a [100] axis, but beats between two components occur for 3 > 5°; the separation of the two
- periods increases with 3 and becomes greatest at i = 45°.

The data shown in table 4 are insufficient for building up any comprehensive picture of
the overall dependence of low-frequency period on orientation, such as was obtained above
for the high-frequency periods. Thus it has not proved possible to work out the shape of the
pockets of Fermi surface responsible for the low-frequency oscillations. It might at first

TABLE 4. PERIOD VALUES OF THE LOW-FREQUENGY OSCILLATIONS IN A (100) PLANE

% 10°A(1/H) (G-1)

08 36:1 (0-3)

12 372 (26)

14 359 (0-2)

60 371 (2+6)

98 31-6% (2-5)

162 363, 228 (4-0, 2:5)
250 36:0, 240 (22, 1-9)
30-2 19-95% (2-8)

422 21:2* (2.9)

440 36-1,21-35 (32, 1-7)

Note. The readings marked * showed evidence of a second period. The figures in brackets are rough
estimates of the possible errors of the individual periods.

sight appear that the greater period, which appears to be independent of ¢, corresponds to
a surface of revolution, but this interpretation is untenable since by symmetry such a surface
would produce no torque. Evidently, more complete data are required about these low-
frequency periods before the results can be unambiguously interpreted in terms of a Fermi
surface shape. The effective number of free electrons (or positive holes) per atom contained
in the pockets of the Fermi surface giving rise to the low-frequency periods must of course
be considerably smaller than that giving rise to the high-frequency periods, and the sizes
of the pockets must be correspondingly smaller.

(b) Anisotropy of the oscillation amplitudes

Since absolute amplitude measurements proved to be rather irreproducible (for a dis-
cussion see Shoenberg (1952)), only qualitative information on the anisotropy of the ampli-
tudes of the high-frequency terms could be obtained, and this is presented in figure 14.
Lifshitz & Kosevich (1954, 1955) have developed Onsager’s interpretation of the de Haas—
van Alphen oscillations to give an explicit expression not only for the period but also for the
amplitude of the oscillations, in terms of the geometrical features of energy surfaces of
arbitrary form. In principle, comparison of these expressions with the data on absolute
amplitudes could give additional information about the geometry of the energy surfaces,
but actually the experimental data are too rough, and in any case other parametérs may be
relevant (e.g. broadening of the energy levels due to various causes (see Dingle 1952))
which would make the comparison of dubious value.
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It is, however, worth noting some general principles which account qualitatively for
some of the features of figure 14. First, the amplitude of each periodic term in the couple
is proportional to the rate of change of the corresponding period with ¢, and must therefore
vanish whenever the period has a maximum or minimum. Secondly, the total couple must
vanish for H along each of the symmetry directions ([100], [110] and [111]). The vanishing
comes about, however, in a more subtle way for the [110] and [111] directions than for
[100].. Thus for y = 45° in the (100) plane (i.e. H along [110]), curve 1 has zero amplitude
because the period has a maximum there, but the amplitudes of 2 and 3 become exactly
equal and of opposite phase, so that the two terms just cancel each other. Evidently, then,

(11)plane
(100)plane *
A 1 B 1,2
J
2 2|3
I T I O L1 L1 1
g 0 10 20 30 40 50 0 10 20 30
=
2 lA
g
© (110) plane
1,2 12
| I
0 10 20

Ficure 14. Schematic diagram showing the variation with ¢ of the amplitude of the high-freqﬁency
terms. The horizontal lines indicate the level of the smallest amplitude detectable.

the observed amplitude should become small over only a very narrow range of y. This
range may indeed be so narrow as to be missed altogether; this appears to have happened
at ¥ = 54-4° in the (110) plane (i.e. H along [111]), where theoretically the amplitudes of
1 and 2 should together be just equal to that of 3, but in antiphase. For curve 1, 2 in the
(110) plane a possible explanation of some of the regions of small amplitude is that the plane
of rotation of H was not exactly (110) so that the two nominally coincident terms occasion-
ally went out of phase by 180°. Finally, it should be noted that the theory suggests a strong
general trend towards smaller amplitudes as the period becomes shorter. '

39-2
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(¢) The dependence of oscillation amplitudes on temperature

According to Lifshitz & Kosevich’s calculations, the slope of a graph of In (a/T") against
T (where a is the amplitude) should be —2n2%k/(eh/2mmc), where m is an effective mass given

N e 08
" 2m\OE/y

4 means the maximum area of cross-section of the energy surface of energy E (i.e. & is the
value of 4 for E = E,), and the derivative is taken at the energy E, of the Fermi surface.
In principle if m were known for all orientations it should be possible to deduce the velocity
of the electrons at the Fermi surface. In practice, however, m can be determined at all
accurately only for oscillations which do not contain more than one component, and a
major investigation would be required to separate out the temperature-dependence of each
component of the more complicated oscillations which are usually observed. Thus only

TABLE 5. MEASUREMENTS OF (e//2mmc) AND Ej IN A (100) PLANE

low-frequency oscillations high-frequency oscillations
102 eh 10ME, 102 eh 1014E,
e 2mme 107A(1/H) (erg) 2mme 10°’A(1/H) (erg)
0-0 — — — 12-5 2-58 48-5 (3-5)
0-8 19-1 36-0 5-3 (0-2) — — —
14 19-5 360 5-4 (0-2) 11-4 2-60 44-0 (3-0)
16-2 19-3 36-3 5:3 (1-0). 11-7 3-11 37-7 (2-9)
250 19-3 360 53 (0-8) 13-8 3-33 41-5 (2-7)
30-2 17-0 — — 13-2 3-41 38-6 (3-6)
422 17-3 — - 127 3-52 361 (4-9)

Note. The figures in brackets are estimates of the possible errors in Ey; these combine the errors in period
and in e#/2mmc;; the latter are of order 5 to 10 %,. No estimates of £j are given for the low frequency oscillations
at ¢ =30-2° and 42-2°, since it is uncertain which one of the two periods is involved.

a very limited investigation was made for a few orientations in a (100) plane and the results
are summarized in table 5; they are in general agreement with the more limited results of
Shoenberg (1952). If eh/2nme is divided by the period, a quantity E; is obtained which,
for ellipsoidal energy surfaces, would be independent of orientation and equal to E,, the
Fermi energy measured relative to the highest (or lowest) energy of the band. In fact, E,
varies with ¥ (though not very significantly for the low-frequency oscillations) ; this is not
very surprising since we know that the energy surfaces are not ellipsoidal. Probably,
however, E; does correctly represent the order of magnitude of E,, the Fermi energy.

(d) The effect of alloying with magnesium

To investigate whether the oscillations in aluminium are caused by electrons or positive
holes, some measurements were carried out on the dependence of period on the quantity
of magnesium dissolved in solid solution in the aluminium crystals. These period measure-
ments were made at orientations where only one low-frequency or high-frequency term
was present, so that a good accuracy (~ 1%) could be achieved. Table 6 shows that there
is no significant dependence of high-frequency period on the concentration of magnesium
(up to 026 %, by weight) in aluminium, but that the low-frequency period at about ¢ = 1°
in a (100) plane increases with the quantity of magnesium; higher concentrations could not
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be used owing to the rapid decrease of amplitude with increasing concentration. The rise
in low-frequency period corresponding to a nominal concentration of 0-26 %, by weight
of magnesium is about 2:3%,. An attempt was made to check the concentration of mag-
nesium in two of the specimens (crystals 4 and B), but owing to their small masses, only a
low accuracy could be achieved ; the analysis indicated that both nominal 0-26 %, specimens
contained (0-24-0-1) %, of magnesium. However, the fact that the oscillation amplitude
in crystal B was only about half that in crystal 4 suggested that if B contained the same
quantity of magnesium as 4, then either some of the magnesium in 4 was not in solid
solution, or else B was badly distorted. ‘ .

Since adding magnesium to aluminium effectively decreases the number of electrons per
atom, this observed rise in low-frequency period (i.e. decrease in maximum cross-sectional

TABLE 6. VARIATION OF PERIOD AND AMPLITUDE WITH ADDITION OF MAGNESIUM
10°A(1/H) (G-Y)

relative
low-frequency
specimen Y low frequency high frequency  amplitude
ure 0-8 36-10\ _ . 2-59 100
p 1-4 35-85} 3598+o013 '
25 — 3-33
70 3 — 3-21
0-08% M 08 625\ o . 261 20
o Me 14 36.45) H%5 010 2.62
25 — 3-32
0-26% Mg (4) 08 36-82 252 7
1-4 36-69 —
25 .
70 — [308itous 3.20
0-26 %, Mg (B) 08 36-72 258 4
14 37-09 —_
25 —_ 3-34
70 — 3-20

Note. Average values of the low-frequency periods for the various concentrations together with estimates
of the errors are indicated by italics above; the errors are standard deviations calculated from the various
individual determinations made in each group (five in each except for the 0-08 %, alloy for which there were
only two). The estimated errors of the high-frequency periods were of order 0-05.

area of the Fermi surface pocket) can be interpreted as meaning that the low-frequency
de Haas—van Alphen oscillations are caused by electrons rather than by positive holes.
A detailed discussion of the interpretation of this and previous experiments on the effect of
alloying has been given by Heine (1956).
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